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Abstract. The ranked set sampling (RSS) method is an efficient sampling method that is used when the judgment

ranking is easy while measuring the sampling units is expensive. This method has a higher efficiency than the

commonly used simple random sampling (SRS) method. If this method is implemented in two stages, it will be

called double-ranked set sampling (DRSS), which has a higher efficiency than RSS. Recently, the except extreme

ranked set sampling (EERSS) method is proposed as a modification of the RSS. In the current study, we modified

the EERSS and suggested the double-stage EERSS (DEERSS) method for estimating the population mean. The

DEERSS estimator is compared with each DRSS, EERSS, RSS, and SRS counterparts. It has been shown that

the DEERSS estimator is more efficient than all the competitor estimators considered in this study. Also, it is

shown that this estimator is unbiased in the case of symmetrical distributions. Three data sets are employed to

test the applicability and efficiency of the DEERSS method.
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1 Introduction

In a lot of survey studies, particularly in agriculture, forestry, biology, and the environment, the
challenge is to find a flexible, effective sampling design that reflects the reality of the population
to be studied. However, sometimes measuring these elements is difficult and expensive, although
it is easy to rank them by judgment before measuring them. Whether by eye, using a concomitant
variable, or any other easy ranking method, to illustrate this, for example, if we assume that we
want to measure the heights of trees in a forest, measuring each tree takes time and effort, whilst
it is easy to make previous judgmental rankings before including the trees in the sample, in this
case, the ranked set sampling and its modifications are useful. Ranked set sampling (RSS) is
first introduced by McIntyre (1952) to estimate the mean yield in the pasture. This method
is found to be more efficient than simple random sampling (SRS) in estimating the population
mean (McIntyre, 1952; Takahasi & Wakimoto, 1968; Dell & Clutter, 1972). The RSS method
can be performed by drawing m simple random samples from the target population each of
size m, ordering the elements within each sample judgmentally or by using any in-expensive
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ranking, and lastly, measuring accurately the ith unit within the ith set for, i = 1, 2, 3, . . . ,m.
These previous steps can be repeated c cycles to get a larger sample size n = mc. Takahasi &
Wakimoto (1968) provided the theoretical properties for this method where the RSS estimator
of the population mean X̄RSS = 1

mc

∑c
j=1

∑m
i=1X(i:m)j is an unbiased estimator, where X(i:m)j

denotes the ith ordered statistic, with the cumulative distribution function (CDF), probability
density function (PDF), mean, and variance are given, respectively, as follows

F(i:m) (x) =

m∑
j=i

(
m
j

)
[F (x)]j [1− F (x)]m−j , (1)

f(i:m) (x) = m

(
m− 1
i− 1

)
f (x) [F (x)]i−1 [1− F (x)]m−i , (2)

µ(i:m) = E
(
X(i:m)

)
=

∫ ∞
−∞

xf(i:m) (x)dx, (3)

and

σ2(i:m) = V ar
(
X(i:m)

)
=

∫ ∞
−∞

(
x− µ(i:m)

)2
f(i:m) (x)dx, (4)

where, f (x) and F (x) are the PDF and CDF of the variable of interest X, with mean µ and
variance σ2. The relative efficiency (RE) of the RSS estimator relative to the SRS estimator
(X̄) is given by

RE =
V ar

(
X̄
)

V ar
(
X̄RSS

) =
1

1− 1
mσ2

∑m
i=1

(
µ(i:m) − µ

)2 . (5)

Later, Dell & Clutter (1972) discussed this estimator with consideration of the errors in judg-
ment ranking, Stokes (1980) developed the RSS method for estimating the population variance
and proved that this estimator is asymptotically unbiased. It also has higher efficiency when
the number of cycles is sufficiently large. To increase the efficiency of the RSS method for fixed
sample size, Al-Saleh & Al-Kadiri (2000) introduced the double RSS (DRSS) for estimating the
population mean. It is proven in their study that the DRSS estimator has higher efficiency
than both the SRS and RSS estimators. Additionally, Al-Saleh & Al-Omari (2002) investigated
the multistage RSS (MSRSS) method by applying RSS in more than two stages to increase the
efficiency at fixed m. It is also proven that the efficiency of the MSRSS estimator is close to m2

for uniform distribution.
Several modifications of the RSS are suggested by many authors, to name a few; Haq et

al. (2016) introduced paired DRSS as an alternative method to DRSS by mixing the RSS and
paired RSS, median DRSS by combining the median RSS and the RSS (Al-Mawan et al., 2018),
robust ranked set sampling (LRSS) (Al-Nasser, 2007), its double LRSS (Al-Omari & Haq, 2019).
Also, Khan et al. (2020) considered mixing the extreme RSS in some cycles with RSS in the
remaining cycles, similarly, Hanandeh et al. (2022b) by mixing ERSS and MRSS with RSS,
likewise, Hanandeh et al. (2022a) suggested two new RSS sampling methods by combining each
RSS and Median RSS with Mini-Max RSS, and Yaparova (2024) suggested the double design
of the moving extreme RSS. For more RSS designs refer to Haq et al. (2014) and Al-Nasser &
Al-Omari (2018).

In addition to the application in estimating the population mean, the RSS sampling method
and its different designs are used in many aspects, such as, Zamanzade & Al-Omari (2016)
developed a new neoteric RSS method for estimating the population variance in addition to
the population mean. While Al-Omari & Al-Nasser (2018) utilized the multistage median RSS
method for estimating the population ratio. Correspondingly, Khan et al. (2020) discussed
estimating the population median using the mixture RSS method. Abdallah et al. (2022) rec-
ommended new maximum likelihood (ML) estimators for the distribution function (CDF) and
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the reliability using LRSS and robust extreme RSS methods. Al-Omari & Abdallah (2023) used
both the moving extreme RSS and the minimax RSS methods to estimate the distribution func-
tion, and Shang & Yan (2024) suggested ML and least square estimates for reliability estimation
based on RSS when strength and stress have Kumaraswamy and Weibull distributions. In con-
trast, Mahdizadeh & Zamanzade (2022) discussed the interval estimation under RSS. Additional
applications are discussed by Al-Omari (2010, 2016).

A recent study by Aldrabseh & Ismail (2023) investigated a new except extremes RSS
(EERSS) method for estimating the population mean by excluding the maximum and mini-
mum ranks. Their study shows that the EERSS estimator of the population mean is unbiased
under the symmetry assumption. Also, based on their simulation results, this method is more
efficient than SRS and RSS in estimating the population mean. For this reason and based on
the results of previous designs implemented in two stages, the researchers expect that the double
design of EERSS will be more efficient than the EERSS design.

The remainder of the paper is organized as follows: The sampling methods considered for
comparisons are explained in Section 2. The proposed sampling design is described in Section
3. The estimator of the population mean is defined in Section 4. In Section 5, the results of
relative efficiency for some selected distributions are conducted. An illustration of the sampling
method using real data sets is given in Section 6. Finally, the conclusion is stated in Section 7.

2 Sampling designs

This section explains the steps for implementing the sampling designs considered for comparison.
It also explains the population mean estimators under these methods.

2.1 Except extremes ranked set sampling design

The EERSS design is suggested by Aldrabseh & Ismail (2023) as a modification of the RSS
method by excluding the extremes from the selected ranks. It is implemented as follows:

1. Draw m random sets, each set of size m+ 2.

2. Order the units within each set judgmentally for the variable of interest.

3. Select the (i+ 1)th ranked unit from the ith set, for i = 1, 2, 3 . . . ,m.

4. The Steps (1-3) can be repeated c times to get a sample of size n = cm.

Let X(2:m+2), X(3:m+2), · · · , X(m+1:m+2) denote the except extreme ranked variables. Then
the estimator based on this method is given by

X̄EERSS =
1

m

m+1∑
i=2

X(i:m+2), (6)

this estimator proved to be an unbiased estimator of the population mean for symmetrical
distribution, but we can’t say that it is unbiased for asymmetrical distribution. So, the mean of
this estimator is given by

E
(
X̄EERSS

)
=

1

m

m+1∑
i=2

µ(i:m+2), (7)

with mean square error

MSE
(
X̄EERSS

)
=

1

m2

m+1∑
i=2

σ2(i:m+2) +
(
E
(
X̄EERSS

)
− µ

)2
, (8)
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therefore the relative efficiency of the EERSS estimator X̄EERSS relative to the SRS estimator
(X̄SRS) is given by

RE =
V ar

(
X̄SRS

)
MSE

(
X̄EERSS

) . (9)

For more information about the DRSS method, refer to Aldrabseh & Ismail (2023).

2.2 Double ranked set sampling design

The DRSS design suggested by Al-Saleh & Al-Kadiri (2000) is a modification of the RSS method
by applying RSS in two stages. It is implemented as follows:

1. Randomly select m groups of samples from the target population, each group of size m2,
with m sets each containing m elements.

2. Apply the RSS method to each group. These yields m ranked set samples, each of size m.

3. Apply the RSS design again on the new matrix to get a double-ranked set sample of size
m.

4. The Steps (1-3) can be repeated c cycles to get a sample of size n = cm.

Let X denote the random variable of interest with mean µ and variance σ2, and Y1j , Y2j , · · · , Ymj
be the double ranked set sample of variables, and j = 1, 2, . . . , c be the cycle number. The
variable Yij = ith−Min

{
Xj(1:m), Xj(2:m), · · · , Xj(m:m)

}
, having the CDF G(i:m) (x), mean µ∗(i:m)

and variance σ2∗(i:m). Then, the DRSS unbiased estimator is defined by

ȲDRSS =
1

mc

c∑
j=1

m∑
i=1

Yij , (10)

with variance

V ar
(
ȲDRSS

)
=

1

cm2

m∑
i=1

σ2∗(i:m) =
σ2

mc
− 1

m2c

m∑
i=1

(
µ∗(i:m) − µ

)2
, (11)

thus, the relative efficiency of the ȲDRSS with respect to the SRS estimator (X̄SRS) is given as
follows

RE =
V ar

(
X̄SRS

)
V ar

(
ȲDRSS

) =
1

1− 1
mσ2

∑m
i=1

(
µ∗(i:m) − µ

)2 . (12)

For more information about the DRSS method, refer to Al-Saleh & Al-Kadiri (2000).

3 Proposed sampling design

In this section, we present a new sampling design by implementing the EERSS method in two
stages. It is called double EERSS (DEERSS), and it is described in the following steps:

1. Randomly select (m+ 2) groups from the target population, each of size m × (m+ 2)
units, and divide each group into m sets.

2. Apply the EERSS method on each of the (m+ 2) groups. This step yields (m+ 2) except
extreme ranked set samples each of size m.
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3. For each of the (m+ 2) except extreme ranked set samples obtained in Step [2], move the
units that have the same (i+1) rank from all samples to the new ith sets, for i = 1, 2, . . . ,m.
This yields m sets each of size (m+ 2).

4. Re-apply the EERSS again on the m sets obtained in Step [3] to get a double except
extreme ranked set sample of size m.

5. The Steps [1-4] can be repeated c cycles to get a double except extreme ranked set sample
of size n = mc.

Example 1. Consider m = 2, and c = 1. In this case, we must randomly draw m + 2 = 4
groups each containing m × (m+ 2) = 8 units, divide each group into m = 2 sets, and then
apply the EERSS method on each of the m+ 2 = 4 groups as follows:

G1 ⇒

{
X1

1(1:4) X1
1(2:4) X1

1(3:4) X1
1(4:4)

X1
2(1:4) X1

2(2:4) X1
2(3:4) X1

2(4:4)

}
⇒
{
X1

1(2:4) X1
2(3:4)

}
G2 ⇒

{
X2

1(1:4) X2
1(2:4) X2

1(3:4) X2
1(4:4)

X2
2(1:4) X2

2(2:4) X2
2(3:4) X2

2(4:4)

}
⇒
{
X2

1(2:4) X2
2(3:4)

}
G3 ⇒

{
X3

1(1:4) X3
1(2:4) X3

1(3:4) X3
1(4:4)

X3
2(1:4) X3

2(2:4) X3
2(3:4) X3

2(4:4)

}
⇒
{
X3

1(2:4) X3
2(3:4)

}
G4 ⇒

{
X4

1(1:4) X4
1(2:4) X4

1(3:4) X4
1(4:4)

X4
2(1:4) X4

2(2:4) X4
2(3:4) X4

2(4:4)

}
⇒
{
X4

1(2:4) X4
2(3:4)

}
For each of the m + 2 = 4 except extreme ranked set samples obtained in the previous steps,
move the units with the same rank from all sets to have new ith sets, for i = 1, 2. This yield
m = 2 sets each of size m+ 2 = 4.

S ⇒

{
X1

1(2:4) X2
1(2:4) X3

1(2:4) X4
1(2:4)

X1
2(3:4) X2

2(3:4) X3
2(3:4) X4

2(3:4)

}

Now, reapply the EERSS again on the 2 sets to get a double except extreme ranked set samples
of size 2.

S∗ ⇒

{
Z1
(1:4) Z1

(2:4) Z1
(3:4) Z1

(4:4)

Z2
(1:4) Z2

(2:4) Z2
(3:4) Z2

(4:4)

}
⇒
{
Z1
(2:4) Z2

(3:4)

}
where

Z1
(2:4) = 2nd −Min

{
X1

1(2:4), X
2
1(2:4), X

3
1(2:4), X

4
1(2:4)

}
and

Z1
(3:4) = 3rd −Min

{
X1

2(3:4), X
2
2(3:4), X

3
2(3:4), X

4
2(3:4)

}
.

For simplicity and in the general case of m, let us denote the DEERSS ordered variables by

Z2, Z3, . . . , Zm+1. That is to say, Zi = (i)th−Min
{
X1
j(i:m+2), X

2
j(i:m+2), . . . , X

m+2
j(i:m+2)

}
. There-

fore, the CDF and PDF of the variable Zi are defined, respectively, as follows:

H(i:m+2) (x) = P (Zi ≤ x)

= P
(
at least i of the

{
X1
i(i:m+2), X

2
i(i:m+2), . . . , X

m+2
i(m+2:m+2)

}
≤ x

)
=

m+2∑
s=i

(
m+ 2
s

)[
F(i:m+2) (x)

]s [
1− F(i:m+2) (x)

]m+2−s
,

(13)
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and

h(i:m+2) (x) =
(m+ 2)!

(i− 1)! (m+ 2− i)!
f(i:m+2) (x)

[
F(i:m+2) (x)

]i−1
×
[
1− F(i:m+2) (x)

]m+2−i
,

(14)

where f(i:m+2) (x) and F(i:m+2) (x) are given in equations [1 - 2], respectively. Thus, the mean
and variance of these double-ordered statistics are given, respectively, as follows:

µ∗∗(i:m+2) =

∫ ∞
−∞

xh(i:m+2) (x)dx, (15)

and

σ2∗∗(i:m+2) =

∫ ∞
−∞

(
x− µ∗∗(i:m+2)

)2
h(i:m+2) (x)dx. (16)

See David & Nagaraja, (2004) and Arnold et al. (2008).

Example 2. The CDF of the DEERSS variables in the case of m=2 is determined as follows:

Firstly, we have to determine at the beginning the distribution of the ordered variables in the
first stage as

F(2:4) (x) =

4∑
j=2

(
4
j

)
[F (x)]j [1− F (x)]4−j

= 6 [F (x)]2 [1− F (x)]2 + 4 [F (x)]3 [1− F (x)]1 + [F (x)]4 ,

and

F(3:4) (x) =
4∑
j=3

(
4
j

)
[F (x)]j [1− F (x)]4−j

= 4 [F (x)]3 [1− F (x)]1 + [F (x)]4 .

After that, the CDFs of the ordered variables are determined in the second stage as follows:

H(2:4) (x) =
4∑
j=2

(
4
j

)[
F(2:4) (x)

]j [
1− F(2:4) (x)

]4−j
= 6

[
F(2:4) (x)

]2 [
1− F(2:4) (x)

]2
+ 4

[
F(2:4) (x)

]3 [
1− F(2:4) (x)

]1
+
[
F(2:4) (x)

]4
,

and

H(3:4) (x) =

4∑
j=3

(
4
j

)[
F(3:4) (x)

]j [
1− F(3:4) (x)

]4−j
= 4

[
F(3:4) (x)

]3 [
1− F(3:4) (x)

]1
+
[
F(3:4) (x)

]4
.

Using these CDFs, we can easily determine the PDFs of the considered double-ordered statistics.
Thus, their moments can be easily evaluated.
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4 Estimation of population mean under DEERSS

In this section, the estimator using DEERSS is defined, along with its expectation, variance,
and mean square error. In addition to its bias and relative efficiency, to make comparisons with
the estimators under SRS, RSS, EERSS, and DRSS. Let Z1j , Z2j , . . . , Zmj denote the DEERSS
observations, where j = 1, 2, · · · , c is the cycle number, then the DEERSS estimator of the
population mean µ is given by

Z̄DEERSS =
1

mc

c∑
j=1

m+1∑
i=2

Zj(i:m+2), (17)

with mean

E
(
Z̄DEERSS

)
=

1

m

m+1∑
i=2

µ∗∗(i:m+2). (18)

Theorem 1. Let f(x) be a continuous symmetric distribution with the population mean µ.
Then, the DEERSS estimator Z̄DEERSS is an unbiased estimator of the population mean µ.

Proof. This theorem can be proved by the symmetry fact that µ
(k)
(i:n) = (−1)k µ

(k)
(n−i+1:n) (Arnold

et al., 2008). Where, µ
(k)
(i:n) is the kth moment around the mean µ, of the ith ordered statistics,

and µ
(k)
(n−i+1:n) is the kth moment around the mean µ of the (n− i+ 1 : n)th ordered statistics.

This means, for example at the k = 1, The moment for each ordered statistic on the left side is
equal in magnitude to the corresponding ordered statistic on the right side, with a difference in
its location relative to the mean. Therefore,

µ∗∗(2:m+2) − µ = µ− µ∗∗(m+1:m+2) ⇐⇒ µ∗∗(2:m+2) + µ∗∗(m+1:m+2) = 2µ,

similarly,

µ∗∗(3:m+2) + µ∗∗(m:m+2) = 2µ . . . ,Median = µ,

thus

E
(
Z̄DEERSS

)
=

1

m

m+1∑
i=2

µ∗∗(i:m+2) =
1

m
mµ = µ.

The proof is complete.

Now, the variance of the Z̄DEERSS is given by

V ar
(
Z̄DEERSS

)
=

1

m2c

m+1∑
i=2

σ2∗∗(i:m+2)

=
σ2

cm
− 1

cm2

[
σ2∗∗(1:m+2) + σ2∗∗(m+2:m+2) − 2σ2 +

m+2∑
i=1

(
µ∗∗(i:m+2) − µ

)2]
,

(19)

thus, the bias and mean square error (MSE) of the estimator are given, respectively, as follows

bias =
1

m

m+1∑
i=2

µ∗∗(i:m+2) − µ =
1

m

m+1∑
i=2

(
µ∗∗(i:m+2) − µ

)
, (20)

and

MSE
(
Z̄DEERSS

)
=

1

m2c

m+1∑
i=2

σ2∗∗(i:m+2) +
1

m2

[
m+1∑
i=2

(
µ∗∗(i:m+2) − µ

)]2
. (21)

Therefore, the relative efficiency of the Z̄DEERSS with respect to the X̄SRS is given by
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RP =
V ar

(
X̄SRS

)
MSE

(
Z̄DEERSS

)
=

σ2

1
m

∑m+1
i=2 σ2∗∗(i:m+2) + c

m

[∑m+1
i=2

(
µ∗∗(i:m+2) − µ

)]2 . (22)

To evaluate each of µ∗∗(i:m+2) and σ2∗∗(i:m+2), follow example 2 to determine the densities of

the considered double ordered variables, and then use the equations [15-16] to evaluate them.
Therefore, the quantities of the bias, MSE, and RE can be easily calculated.

5 Results of comparisons

In this section, comparisons are made with the other considered sampling methods. The RE
and the bias of the DEERSS estimator are calculated based on the formulas [22, 20]. It includes
calculating the RE and the bias of the DEERSS estimator for some symmetric distributions
(Uniform (0, 1), Normal (0, 1), Student (4), Logistic (5, 2) and Beta (3, 3)) . Also, for some
asymmetric, Exp (1), Beta (5, 2), Gamma (2, 3), HalfNormal (2), Rayliegh (1), Weibull (1, 1),
and χ2(5). The RE and the bias are evaluated at different values of m = 2, 3, 4, 5 and 6. Each
of the corresponding DRSS, EERSS, and RSS estimators to the SRS estimator is evaluated to
make the comparisons. All calculations are done using Mathematica 13.3 Software. The exact
values are obtained in all cases except for each of the distributions (Normal(0, 1), Student(4),
Logistic(5, 2), HalfNormal (2) and χ2(5)), where in these cases, the numerical methods are
used in the calculations.

Tables 1–5 report the results of the RE for some symmetric and asymmetric distributions
at different values of m = 2, 3, 4, 5, and 6. Table 6 reports the results of the bias of both the
DEERSS and EERSS estimators in the case of asymmetrical distributions at the same considered
values of m = 2, 3, 4, 5, 6. To help readers understand Tables 1 - 6, the results of RE and bias
are also summarized in Figures 1 and 2, respectively. Based on these results, we conclude that

Table 1: Relative efficiency based on each of DEERSS, DRSS, EERSS, and RSS to SRS at m=2

Sampling Method

Distribution DEERSS DRSS EERSS RSS

Symmetrical

Uniform (0, 1) 5.5135 1.9231 2.08333 1.5000
Normal (0, 1) 7.6322 1.7852 2.7743 1.4669
Student (4) 11.4227 1.6325 3.9304 1.3719
Logistic (5, 2) 8.9134 1.7057 3.1637 1.4367
Beta (3, 3) 6.6482 1.8525 2.4641 1.4880

Asymmetrical

Exp (1) 5.4157 1.5158 2.8235 1.3333
Beta (5, 2) 6.3461 1.7946 2.5031 1.4639
Gamma (2, 3) 6.1847 1.6290 2.7849 1.3913
HN (2) 5.8353 1.7209 2.51071 1.4298
Rayleigh (1) 6.7504 1.7742 2.6225 1.4576
Weibull (1, 1) 5.4157 1.5158 2.8235 1.3333
χ2(5) 6.4041 1.6563 2.7138 1.4658
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Table 2: Relative efficiency based on each of DEERSS, DRSS, EERSS, and RSS to SRS at m=3

Sampling Method

Distribution DEERSS DRSS EERSS RSS

Symmetrical

Uniform (0, 1) 8.6601 3.0256 2.5200 2.0000
Normal (0, 1) 10.6285 2.6633 3.2972 1.9138
Student (4) 14.6872 2.2201 4.5910 1.6853
Logistic (5, 2) 11.8680 2.4133 3.7281 1.8381
Beta (3, 3) 9.6625 2.8284 2.9498 1.9682

Asymmetrical

Exp (1) 6.2899 2.0236 2.9605 1.6364
Beta (5, 2) 8.8055 2.6805 2.9332 1.9146
Gamma (2, 3) 7.6468 2.2664 3.0854 1.7532
HN (2) 7.7143 2.4992 2.8586 1.8409
Rayleigh (1) 9.2352 2.6176 3.0724 1.8975
Weibull (1, 1) 6.2899 2.0236 2.96053 1.6364
χ2(5) 8.0583 2.3277 3.2130 1.9128

Table 3: Relative efficiency based on each of DEERSS, DRSS, EERSS, and RSS to SRS at m=4

Sampling Method

Distribution DEERSS DRSS EERSS RSS

Symmetrical

Uniform (0, 1) 12.5345 4.2808 2.9697 2.5000
Normal (0, 1) 13.9469 3.5264 3.8038 2.3469
Student (4) 17.8545 2.7730 5.1922 1.9627
Logistic (5, 2) 14.9492 3.1199 4.2587 2.2164
Beta (3, 3) 13.1741 3.9025 3.4323 2.4433

Asymmetrical

Exp (1) 7.5720 2.5232 3.0509 1.9200
Beta (5, 2) 11.7075 3.6364 3.3407 2.3565
Gamma (2, 3) 9.4538 2.9066 3.3301 2.0958
HN (2) 9.9942 3.3172 3.1674 2.2393
Rayleigh (1) 12.0753 3.5105 3.4957 2.3251
Weibull (1, 1) 7.7520 2.5232 3.0509 1.9200
χ2(5) 10.0422 3.0066 3.6931 2.3471

Table 4: Relative efficiency based on each of DEERSS, DRSS, EERSS, and RSS to SRS at m=5

Sampling Method

Distribution DEERSS DRSS EERSS RSS

Symmetrical

Uniform (0, 1) 17.1110 5.6705 3.4286 3.0000
Normal (0, 1) 17.5611 4.4556 4.2979 2.7702
Student (4) 20.9197 3.2983 5.7497 2.2150
Logistic (5, 2) 18.1418 3.8252 4.7642 2.5783
Beta (3, 3) 17.1639 5.0609 3.9120 2.9145

Asymmetrical

Exp (1) 9.2997 3.0160 3.1212 2.1898
Beta (5, 2) 15.1196 4.6510 3.7302 2.7920
Gamma (2, 3) 11.6941 3.5484 3.5391 2.4244
HN (2) 12.7912 4.1663 3.44759 2.6284
Rayleigh (1) 15.3289 4.4431 3.8975 2.7436
Weibull (1, 1) 9.2997 3.0160 3.1212 2.1898
χ2(5) 12.4487 3.6906 4.1579 2.7721
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Table 5: Relative efficiency based on each of DEERSS, DRSS, EERSS, and RSS to SRS at m=6

Sampling Method

Distribution DEERSS DRSS EERSS RSS

Symmetrical

Uniform (0, 1) 22.3703 7.1815 3.8942 3.5000
Normal (0, 1) 21.4502 5.4155 4.7820 3.1857
Student (4) 23.8812 3.8011 6.2731 2.4484
Logistic (5, 2) 21.4331 4.5295 5.2501 2.9276
Beta (3, 3) 21.6172 6.2941 4.3893 3.3829

Asymmetrical

Exp (1) 11.5398 3.5036 3.1827 2.4490
Beta (5, 2) 19.0897 5.7169 4.1050 3.2227
Gamma (2, 3) 14.4431 4.1913 3.7240 2.7423
HN (2) 16.2038 5.0413 3.7061 3.0100
Rayleigh (1) 19.0417 5.4093 4.2816 3.1551
Weibull (1, 1) 11.5398 3.5036 3.1827 2.4490
χ2(5) 15.3507 4.3786 4.6103 3.1899

Table 6: Bias of the mean estimator based on each of DEERSS and EERSS at m = 2, 3, 4, 5, and 6

|Bias (µ̂DEERSS)|

Distribution m = 2 m = 3 m = 4 m = 5 m = 6

Exp (1) 0.1958 0.1547 0.1215 0.0947 0.0729
Beta (5, 2) 0.0130 0.0100 0.0076 0.0058 0.0043
Gamma (2, 3) 0.0689 0.0546 0.0430 0.0336 0.0260
HN (2) 0.1544 0.1205 0.0933 0.0715 0.0539
Rayleigh (1) 0.0491 0.0391 0.0309 0.0242 0.0188
Weibull (1, 1) 0.1958 0.1547 0.1215 0.0947 0.0729
χ2(5) 0.4172 0.3310 0.2610 0.2043 0.1580

|Bias (µ̂EERSS)|

m = 2 m = 3 m = 4 m = 5 m = 6

Exp (1) 0.1667 0.1611 0.1542 0.1471 0.1405
Beta (5, 2) 0.0110 0.0106 0.0101 0.0096 0.0091
Gamma (2, 3) 0.0586 0.0567 0.0543 0.0518 0.0495
HN (2) 0.1310 0.1265 0.1208 0.1151 0.1097
Rayleigh (1) 0.0418 0.0405 0.0388 0.0370 0.0354
Weibull (1, 1) 0.1667 0.1611 0.1542 0.1471 0.1405
χ2(5) 0.0231 0.0224 0.0214 0.0205 0.0196
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Figure 1: Relative efficiency based on each of DEERSS, DRSS, EERSS, and RSS to SRS at
m = 2, 3, 4, 5, 6

Figure 2: Absolute bias of the estimator based on each of DEERSS and EERSS at m = 2, 3, 4, 5, 6
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• For a fixed value of m and the same parent distribution, the RE differs from one sampling
method to another.

• In all sampling methods DEERSS, DRSS, EERSS, and RSS, all values of RE are more
than one, which means that all these estimators are more precise than the SRS estimator.

• For a fixed value of m and the same sampling method, the RE varies from one distribution
to another. For instance, the RE of the DEERSS estimator at m = 2 is the smallest for
the Exp (1) distribution; it is 5.5135, and the largest for the Student (4) distribution; is
11.4227. Also, for a fixed value of m, it cannot be said that the efficiency of symmetric
distributions is always greater than that of asymmetric distributions.

• For the same parent distribution and sampling method, the values of the RE increase in
m for all considered sampling methods. To explain that in the case of Uniform (0, 1) at
m = 2, 4, and 6, the REs of the DEERSS estimator, respectively, are 5.5135, 12.5345, and
22.3703, the REs of the DRSS estimator, respectively, are 1.9231, 4.2808, and 7.1815, the
REs of the EERSS estimator, respectively, are 2.08333, 2.9697, and 3.8942, the REs of
the RSS estimator, respectively, are 1.5, 2.5 and 3.5. Also, we see from the results of the
RE that each DEERSS and DRSS increases faster than each EERSS and RSS (Figure 1).

• For fixed m and at the same parent distribution, the DEERSS estimator has the largest
RE in all cases considered in the study (Figure 1).

• For fixed m and at the same parent distribution, the DEERSS estimator has the largest
RE in all cases considered in the study. This means that DEERSS is the best estimator
among all considered estimators. There is a significant difference that can be seen in the
results.

• All of these are strong indications of the ability of the DEERSS to reduce the sample size
to be measured.

• The results of the bias show that the estimators in both methods, RSS and DRSS, are un-
biased in the case of symmetrical and asymmetrical distributions, while the DEERSS and
EERSS estimators are only unbiased for the symmetrical distribution. This is consistent
with the results of Theorem 1.

• For m = 2, the bias of the DEERSS estimator is greater than that of the EERSS estimator
for all asymmetrical distributions considered in this study. In contrast, for m > 2, the
bias of the DEERSS estimator is smaller than that of the EERSS estimator for all asym-
metrical distributions considered in this study, except for the χ2(5) distribution (Table
6). Additionally, the bias values of both DEERSS and EERSS estimators decrease as m
increases (Figure 2).

6 Applications

In this section, three real-life examples will be studied. This is to verify the applicability of
the sampling method introduced in this study and to validate the relative efficiency results in
the previous section. Data sets about some of the most important agricultural indicators were
obtained from Word Bank Data websites. The populations are described as follows: The first
data set presents the percent of arable land out of the total land in 258 countries for the year
2021 (World Bank Data, 2022a). While the second data set presents the percent of production
from agriculture, fishing, and forestry out of the gross domestic product, for 262 countries in
2021 (World Bank Data, 2022b). Lastly, the third data set represents the percent of forest areas
out of the total area in 266 countries for the year 2021 (World Bank Data, 2022c).
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Before analyzing the real data sets, the missing and outlier values were treated using the
MATLAB 2023b program. Table 7 shows the descriptive statistics for the three data sets after
cleaning data, where the mean of the percent of agricultural land (Data set 1), the percent of
agricultural production (Data set 2), and the percent of forest land (Data set 3) are, respectively,
37.2522, 9.1496, and 31.3706. Figure 3 shows that the first data set is approximately symmetric,
while the second and third data sets are non-symmetric. The skewness values in Table 7 support
these results.

Figure 3: Histogram of the real data sets

Table 7: Descriptive statistics of the real data sets

N Min Max Mean Q1 Q2 Q3 Var Skewness

Pop1 258 0.5000 81.8925 37.2522 20.6258 38.5132 48.8254 419.3468 0.1162
Pop2 266 0.0281 29.3329 9.1496 3.3905 7.4930 13.6199 48.2194 0.8057
Pop3 262 0.0000 93.5033 31.3706 11.7228 30.3187 45.8381 504.4981 0.5676

To illustrate the applicability of the DEERSS method and its efficiency compared to SRS,
the estimator of the population mean was calculated using the DEERSS method. The RE and
bias measures were used for illustration. Both RE and bias were calculated using the formulas
(22, 20) via MATLAB 2023b, with 1,000,000 repetitions.

The RE of the estimators compared to SRS and their bias values are presented in Tables 8
and 9, and illustrated in Figures 4 and 5, respectively. It is clear from these results that the RE
of Z̄DEERSS are the largest among all estimators and increase in m (Figure 4). These results
are also consistent with the results in the previous section.

Table 8: Relative efficiency of the mean estimator for the real data sets based on each of DEERSS,
DRSS, EERSS, and RSS to SRS at m=2,3,4 and 5

Population Sampling Method m=2 m=3 m=4 m=5

Population 1

DEERSS 6.5449 9.3161 13.9303 21.8861
DRSS 1.8520 2.8661 4.0545 5.4764
EERSS 2.5488 3.0723 3.5960 4.1329
RSS 1.4961 1.9933 2.5124 3.0332

Population 2

DEERSS 4.9146 7.6038 11.9296 17.815
DRSS 1.7811 2.7140 3.8173 5.0937
EERSS 2.2806 2.6338 2.9750 3.3201
RSS 1.4562 1.9164 2.3846 2.8774

Population 3

DEERSS 6.4558 9.4905 13.4400 18.5413
DRSS 1.8172 2.7572 3.8193 5.0602
EERSS 2.5344 3.0304 3.5130 3.9934
RSS 1.4776 1.9465 2.4352 2.9280
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Table 9: Absolute bias of the estimators for the real data sets based on each of DEERSS, DRSS,
EERSS, and RSS at m=2,3,4 and 5

Population Sampling Method m=2 m=3 m=4 m=5

Population 1

DEERSS 0.4238 0.4922 0.4194 0.3473
DRSS 0.0054 0.0048 0.0016 0.0027
EERSS 0.2171 0.2166 0.2217 0.2465
RSS 0.0285 0.0095 0.0005 0.0026

Population 2

DEERSS 0.9563 0.6553 0.4649 0.3173
DRSS 0.0013 0.0033 0.0004 0.0005
EERSS 0.8006 0.7730 0.7258 0.6829
RSS 0.0016 0.0019 0.0043 0.0019

Population 3

DEERSS 1.8166 1.5992 1.3788 1.1932
DRSS 0.0039 0.0049 0.0072 0.0007
EERSS 1.4441 1.4247 1.3893 1.3516
RSS 0.0068 0.0141 0.0037 0.0058

Figure 4: Relative efficiency of the mean estimator for the three data sets based on DEERSS,
DRSS, EERSS, and RSS to SRS at m = 2, 3, 4, 5

Figure 5: Absolute bias of the mean estimator for the three data sets based on DEERSS, DRSS,
EERSS, and RSS at m = 2, 3, 4, 5

7 Conclusions

This study introduced a new sampling method to estimate the population mean. It is proven
that the estimator using this method is unbiased for symmetrical distributions. The results show
that this estimator has a higher efficiency than its counterparts based on DRSS, EERSS, and
RSS. Three real data sets are used to illustrate the new estimator. Therefore, if the assumption
of easy judgment ranking in the two stages is achieved, then using this method to estimate the
population mean will be more effective than the other considered estimators.

This study focused on estimating the population mean. This method can be used in future
applications, such as estimating the population median, quartiles, variance, proportion, ratio,
and reliability.
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